Nesting "Global" and "Future" in LTL Formulas

$s \models GF \phi$ "infinitely ϕ is two.

Each path starting with s is s.t. continuously, ϕ eventually holds.

Q. Formulate the above nested pattern of LTL operator. * $\forall \pi \cdot \pi = \$ \Rightarrow \cdots \Rightarrow$ $(\forall \overline{\iota} \cdot \overline{\iota} \Rightarrow | \Rightarrow (\exists \overline{\iota} \cdot \overline{\iota} \Rightarrow \overline{\iota} \land \pi^{\overline{\iota}} \models \varphi))$ Q. How to prove the above nested pattern of LTL operators?

Q. How to **disprove** the above nested pattern of LTL operators?

Slide 45

Model Satisfaction: Exercises (6.1)

Exercise: What if we change the LHS to s₂?

Slide 45

Model Satisfaction: Exercises (6.2)

Exercise: What if we change the LHS to s₂?

(1) $GF \phi \Rightarrow G\phi$ (2) $G \phi \Rightarrow GF \phi$ (3) $GF \phi \Leftrightarrow G\phi$

(1) $FG\phi \Rightarrow GF\phi$ (2) $GF\phi \Rightarrow FG\phi$ (3) $FG\phi \Leftrightarrow FF\phi$